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Scaling in the time-dependent failure of a fiber bundle with local load sharing
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We study the scaling behaviors of a time-dependent fiber-bundle model with local load sharing. Upon
approaching the complete failure of the bundle, the breaking rate of fibers diverges according tor (t)}(Tf

2t)2j, whereTf is the lifetime of the bundle andj'1.0 is a universal scaling exponent. The average lifetime
of the bundlê Tf& scales with the system size asN2d, whered depends on the distribution of individual fiber
as well as the breakdown rule.@S1063-651X~99!13902-3#

PACS number~s!: 64.60.Fr, 62.20.Mk, 64.60.Ak, 05.45.2a
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I. INTRODUCTION

The failure of disordered materials under load is a co
plicated phenomenon, the modeling of which is a subjec
great interest because it forms the basis of numerous a
cations from space technology to paper making@1#. The fail-
ure process also represents an important class of pattern
mation and scaling problems@2#. The fiber-bundle model, a
a simple and interesting theoretical model in this field, h
been studied extensively. The early studies on the st
fiber-bundle model can be traced back to the work
Daniels@3#, while the time-dependent method to the mod
was proposed by Coleman@4#. In a recent paper@5#, Gomez
et al. developed a probabilistic method for solving the tim
dependent model. In the static model, each fiber in
bundle is assumed to have a strength threshold, a load a
that will break it instantly, and a load below that does
harm. In the time-dependent model, each fiber is assume
have a lifetime under a given load history, and it brea
because of fatigue. The load-sharing rules, which desc
how the load of a broken element is transferred to surv
elements, are essential to the definition of the model. In w
is called equal load sharing model, the total load of
bundle is equally shared by all surviving fibers, while in t
local load sharing~LLS! model the load of a broken fiber i
transferred to its nearest neighbors. A hierarchically or
nized fiber bundle was also proposed, and has received m
attention, especially in the geophysical literature@6,7#. Vari-
ous aspects of the fiber-bundle model have been investiga
such as the strength distribution for a static model@3,8# and
the lifetime distribution for a dynamic one@4,9#. In this pa-
per, we will study an LLS time-dependent model, and inv
tigate the scaling behaviors in its failure process.

Let us consider a fiber bundle consisting ofN fibers. We
assume that when a fiber is subjected to a load historys(t),
some damage will accumulate, which is described by

d~ t !5E
0

t

n@s~t!#d t, ~1!
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where the load-dependentn(s) is introduced as a hazar
rate, which is usually referred to as thebreakdown rule@4# in
the literature.

A fiber, say fiber i, is assumed to have an enduran
threshold~or say, critical damage! di

c , which is drawn from
a cumulative distribution

P~di
c,d!512exp@2C~d!#, ~2!

whereC(x) is the shape function. Previous theoretical and
experimental work@4,9# favors a shape function of the form

C~x!5xb. ~3!

As for the breakdown rulen(s), two special forms are
widely used in the literature: the power-law form

np~s!5n0S s

s0
D r

~4!

and the exponential form

ne~s!5f0expS hs

s0
D , ~5!

wheren0 ,s0 ,r,f0 , andh are all positive constants.
Under a load each fiber will break when the damage

cumulated exceeds its endurance threshold, and all fibers
break eventually, leading to the complete failure of t
bundle. Let us denote the total load on the bundle byNs. In
general,s is a function of time. For example, it can be
linearly increasing function or a periodic function of tim
@4#. In this paper, we will consider the simple case thats is
a constant. In the following numerical calculations, if n
otherwise specified, the load is set to bes5s0 . It should be
noted that although the total load on the bundle is const
the loads on the individual fiberss i(t) are not.

II. THE LLS MODEL

We consider a fiber-bundle model with the LLS rule.N
fibers are arranged evenly on a circle, and each of them
two adjacent neighbors. The total load on the bundleNs,
1589 ©1999 The American Physical Society
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FIG. 1. Breaking rater (t), defined in the text, scales with the time to failure as (Tf2t)2j, wherej'1.0 is quite a universal value.~a!
Using the power-law breakdown rule~4!, with r510, and the shape function~3!, with b52. ~b! Using the exponential breakdown rule~5!,
with h51.0 and shape-function parameterb54. In both~a! and~b!, the system sizes areN5100 and the dashed lines show the curves
y}x21 for reference.
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kept constant in this study, is shared by survival fibers
survival fiberi carries the loads i5Kis, where the concen
tration factorKi511( l i1r i)/2. Herel i(r i) is the number of
broken fibers on the left~right! of fiber i. It is clear that
( iKi5N, so the total load is conserved. With such a lo
sharing rule, the load of a broken fiber is transferred to
surviving neighbors on both sides. Note that this rule is d
ferent from the one-side case@10#, in which the load of a
broken fiber is transferred only to its neighbor on one sid

This LLS fiber-bundle model was developed by Harlo
and Phoenix@8# to model the failure of a unidirectional com
posite material under tensile loads. The model has drawn
attention of many authors. In recent years, the static L
fiber-bundle model was studied in terms of the burst-s
distribution@11–13#, and the failure probability of the bundl
under a given load@14,15#. In this study, we will focus on
the scaling behaviors of the dynamic LLS fiber-bund
model.

III. SCALING OF BREAKING RATE WITH TIME
TO FAILURE

Let Nf(t) be the number of broken fibers in the bundle
time t, with Nf(0)50 andNf(Tf)5N, whereTf is the life-
time of the whole bundle. The breaking rate of the bundle
defined as

r ~ t !5
dNf~ t !

dt
. ~6!

We have performed extensive Monte Carlo simulations
the breaking process of the time-dependent fiber-bun
model with LLS, and found that in a wide range of parame
value, the breaking rater (t), upon approaching the comple
failure, scales with the time to failure as

r ~ t !}~Tf2t !2j, ~7!

and the scaling exponentj'1.0 is a quite universal value
Examples of the behavior of the breaking rate are show
Fig. 1. In this log-log plot, dashed lines with slope21 are
also shown for reference. The numerical results are not v
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smooth because of fluctuation, but the general trend of
breaking rater (t) agrees well with Eq.~7!.

In what follows, we try to understand the scaling behav
~7! through analytical treatment. In the discussion, we ta
the limit N→`. Let us call the connective broken fibe
bounded by unbroken ones acrack. Thesizeof a crack is the
number of broken fibers. Because of the local load-shar
rule, the fibers bounding a larger crack experience a hea
load than those bounding smaller ones. Therefore, whe
major crack is formed in the bundle, breaking will most
occur along it. In other words, the fibers adjacent to the m
jor crack are the ones that will most probably break in t
next step. This can be seen from the evolution of the sizecm
of the biggest crack. Figure 2 showscm versus the total
number of broken fibers in the bundle. At the early stage
the failure process,cm remains constant for some time (A),
which indicates that small cracks nucleate at different lo
tions. As more and more fibers break, some small cracks
coalesce or grow to form a major crack, and then the ma
crack grows, which is reflected in this figure by a line
increase ofcm with Nf with slope 1(B). During its growth,
the major crack may also coalesce with some small cra
and become even larger, indicated in the figure by lo
slopes steeper than 1 at some points~e.g.,C).

Suppose the size of the major crack isNf(t)2k, wherek
is the number of failed fibers that do not belong to the ma
crack. The loads on the fibers adjacent to the major crack

FIG. 2. Example of the evolution of the biggest crack in t
failure process of the fiber bundle. The exponential breakdown
is used withh51. The other parameters areN5100,b54. ~b! is a
part of ~a! enlarged.
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@11(Nf2k)/2#s, so damage will accumulate in these fibe
with the rate n(@11(Nf2k)/2#s). The breaking rate of
these fibers can be assumed to be proportional ton(•), and
one has

r ~ t !5
d Nf~ t !

d t
5A~ t !nS F11

Nf2k

2 Gs D , ~8!

whereA(t) is a factor that depends on the accumulated da
ages in the fibers and their endurance thresholds. An e
calculation ofA(t) is extremely difficult and might be im
possible. We assume that the variance ofA(t) is unimportant
and takeA as a constant for simplicity. The validity of thi
assumption is verified by the agreement with numerical
sults. Note that sometimes a fiber adjacent to the major c
happens to be also adjacent to a small crack, resultin
more load on it, the influence on the breaking rate, howe
is negligible approaching the complete failure.

For the exponential form of breakdown rule~5!, we have

d Nf~ t !

d t
5Af0expFhS 11

Nf2k

2 D s

s0
G , ~9!

and therefore,

r ~ t !5a21~Tf2t !21, ~10!

where a5hs/(2s0);Tf is the value of time that gives
Nf(Tf)→`.

For the power-law form of breakdown rules~4!,

d Nf~ t !

d t
5An0F S 11

Nf2k

2 D s

s0
Gr

, ~11!

and

r ~ t !5CFr21

2
C~Tf2t !G ~r/12r!

}~Tf2t !212[1/~r21!] ,

~12!

with C5An0(s/s0)r, and Nf(Tf)→`. Therefore, j51
11/(r21). Sincer is quite large, typically between 10 an
80 @9#, it is not surprising thatj'1.0 in the numerical simu-
lations.

IV. LIFETIME OF THE BUNDLE

In deducing the scaling of the breaking rate, we ha
taken the thermodynamic limit by settingNf(Tf)5`. In nu-
merical simulations, however, we cannot realize infinite s
tem size. Given the local load-sharing rule, the lifetimeTf of
a fiber bundle depends on the endurance of each fiber. Du
fluctuation,Tf is different from bundle to bundle. Since th
fluctuations are related to the system size, the average
time ^Tf& of the bundle should in principle depend onN,
which is known as a size effect. We found that in general
average lifetimê Tf& scales with the system size as

^Tf&}N2d, ~13!

where^•••& means the ensemble average. Some of the
merical results are shown in Fig. 3, in which the power-l
fit to the data is quite good. Some other forms of fit to t
-
ct

-
ck
in
r,

e

-

to
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data were also tried, but none is better than the power law
should be noted that in the static LLS model the avera
strength of the bundle follows a logarithmic dependence
the system size@10,16#.

The exponentd for the power law, however, is not of
universal value. It depends on the breakdown rule as we
the distribution of damage endurance for individual fiber. W
performed extensive numerical simulations to explore the
lation between the exponentd and the parametersb,r and
h. Some results are listed in Table I. There seems no sim
general expression relatingd to b,r, andh. For some lim-
iting cases, however, we can get a simple relation. Fr
Table I, one can see that whenr or h is large, the value of
the exponentd is very close to 1/b. This result can be un-
derstood by the lifetime distribution of the fiber bundl
Whenr or h is large, the fiber bundle breaks in the follow
ing way: when the weakest fiber breaks, it will form th
crack that leads to the failure of the whole bundle. So
lifetime of the bundle will depend on the weakest fiber, a
is thus determined by it. From Eqs.~1!, ~2!, and ~3!, the
lifetime of an individual fiber under a constant loads, is
distributed as

P~ t f,t !512e2[n~s!t] b
. ~14!

For a bundle ofN fibers, if the bundle’s lifetime is deter
mined by the lifetime of its weakest element, the lifetim
distribution for such a bundle is, by the weakest-link rule a
whenN is large,

P~Tf,t !512e2N[n~s!t] b
. ~15!

And this is the Webull distribution, with which the averag
lifetime of the bundle is

FIG. 3. Average lifetime of the bundle scales with system sizeN
according to a power law. The circles are results from numer
simulations with at least 100 samples, the solid line is for
power-law fit y5ax2d to the numerical data.~a! b51,h510,
a58.1431026, and d50.60. ~b! b52, r540, a50.87, andd
50.50.

TABLE I. The exponentd, defined in Eq.~13!, depends on the
breakdown rule as well as the endurance distribution of the fib

r510 r520 r540 h51 h510 h520

b51 0.49 0.83 0.97 0.17 0.60 0.97
b52 0.33 0.47 0.50 0.10 0.42 0.52
b54 0.23 0.26 0.27 0.053 0.23 0.26
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^Tf&5E
0

`

t dP~Tf,t !5E
0

`

t d~12e2N[n~s!t] b
!. ~16!

Changing the variable of integrationNtb5tb, one gets

^Tf&5N21/bE
0

`

t d~12e2[n~s!t] b
!. ~17!

The integration in the above equation is independent ofN, so
^Tf&}N21/b, andd51/b.

From the numerical results, we notice thatd51/b is not
satisfied by all values ofr andh. The deviation ofd from
1/b may indicate the deviation of the lifetime distributio
from the Webull distribution. In Fig. 4, we plot the lifetim
distribution of the fiber bundle with Webull axes, that is,
plot ln$2ln@12P(t)#% versus lnt. If the distribution is of We-
bull form, P(t)512exp(2atm), one should see a straigh
line in such a plot, and the slope of the line gives the Web

FIG. 4. Lifetime distribution of the LLS fiber bundle. The re
sults in this figure are from simulations of 104 samples.~a! b
51, r510, N51000. The curve is not a straight line.~b! b52, r
540, andN5800. The curve is quite a straight line, indicating
Webull distributionP(t)512exp(2atm). The best linear fit to the
numerical data in~b! gives the slopem'2.03.
x,

s.

s-
n-
ll

modulusm. For the casesb52 andr540 ~Fig. 4b!, we get
quite a straight line, and the best linear fit to the distributi
curve gives the Webull modulusm'2.03, very close tob
52. Notice that for this cased'0.5051/b. For the caseb
51 andr510 ~Fig. 4a!, however, the distribution curve i
not a straight line, indicating that the lifetime is not very we
Webull distributed. For this cased'0.49, which is quite
different from 1/b51.0.

In the early studies on the lifetime distribution, Phoen
and Tierney@9# were able to obtain an approximation to th
lifetime distribution of the fiber bundle, which was also
Webull form. Their results were based on the idea that wh
ever a crack of critical size, called ak* crack in their paper,
emerges in the system, the bundle will fail instantly.

V. CONCLUSIONS

In conclusion, we have studied some scaling behavior
the time-dependent fiber-bundle model with LLS rule.
quite a wide range of parameter values, the breaking
scales with the time to failure as (Tf2t)21. The average
lifetime of the bundle scales with system size asN2d, with d
dependent on the breakdown rule and the endurance d
bution of the individual fiber. In the limiting cases in whic
r or h is very large, the lifetime distribution of the bundl
can be well approximated by a Webull form, and the Web
modulus for this distribution is just the shape-function p
rameterb, and the scaling exponentd51/b.
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